Lasereinsatz im Recyling: Zerlegen und Wiederverwerten
Hinzu kommen Demontage, Wiederverwendung und Recycling, die künftig eine sehr wichtige Rolle spielen werden: 2030 sollen laut einem Vorschlag der EU-Kommission 70 Prozent einer Batterie bezogen auf ihr Gewicht recycliert werden. Auch diese Vorgabe müssen neue Produktionskonzepte berücksichtigen. Sauer: »Eventuell stehen dann neue Verfahren zum Zerlegen der Komponenten und Ablösen des Graphits an, bei denen auch der Laser infrage kommt.« Doch für das benachbarte Fraunhofer ILT wäre es kein Neuland, ergänzte Moderator Dr. Alexander Olowinsky, Gruppenleiter Mikrofügen am Fraunhofer ILT: »Wir beschäftigen uns beim Elektronikschrott bereits mit dem Thema.«
Die Wissenschaft unterstützt die Industrie bei diesen anstehenden Herausforderungen. Eine Antwort aus Aachen lautet CARL: Die vier Buchstaben stehen für »Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems«. Auf dem Campus entsteht gerade ein Zentrum zur grundlegenden Erforschung der Alterung von Batteriematerialien und leistungselektronischen Systemen, in dem viele Institute der RWTH Aachen wie das Fraunhofer ILT und das Forschungszentrum Jülich interdisziplinär zusammenarbeiten werden. Es handelt sich um eine Premiere, denn erstmals geht eine Forschungseinrichtung das Thema ganzheitlich und systematisch an: Im Mittelpunkt steht die komplette Prozesskette von der Herstellung bis zur Anwendung und der Lebenszyklus sämtlicher Materialien und Komponenten.
Einen wichtigen Part in der Prozesskette übernehmen Fügetechniken. Um zu wissen, wie sie optimal und prozesssicher funktionieren, untersuchen Dr. Christian Hagenlocher und seine Kolleginnen und Kollegen vom Institut für Strahlwerkzeuge (IFSW) aus Stuttgart mit Röntgenverfahren, wie sich Kapillaren beim Laserschweißen in der Elektromobilität verhalten. Zusammen mit dem Fraunhofer ILT und dem Lehrstuhl für Lasertechnik LLT der RWTH Aachen University fuhren die Kollegen von der Universität Stuttgart zum Deutschen Elektronen-Synchrotron (DESY) nach Hamburg, um mit Hilfe von Synchrotron-Strahlung die Schmelzbaddynamik und die Entwicklung von Dampfkapillaren beim laserbasierten Schweißen sichtbar zu machen und so zu analysieren.
Neue Einblick in das Laserstrahlschweißen dank DESY
Dank der Zusammenarbeit mit den DESY-Experten erhielt das IFSW neue Einblicke. »Wir konnten aus den Grauwerten der X-Ray-Aufnahmen die Geometrie der Kapillaren dreidimensional rekonstruieren«, berichtete Hagenlocher. »Wir sahen dünne Kapillaren, die sich immer weiter aufblähen, bis es dann schließlich zu einem Abschnüren und zu einem Kollaps kam.« Ein wichtiger Grund sind zu enge Kapillaröffnungen, die es zu verhindern gilt. Als Gegenmaßnahme setzen die Stuttgarter auf Laser mit hoher Strahlleistung und auf hochfrequentes Modulieren des Laserstrahls (z.B. kreisförmiges Wobbeln). Mit bis zu 30 m/min erreicht ein 16 Kilowatt Laser beim Schweißen von Aluminiumlegierungen eine Schweißtiefe von 2,5 mm. Hagenlocher: »Wir erhalten im Vergleich zu einer langsameren Schweißung eine stabile Kapillare, weil sich hier die Öffnung stark vergrößert hat.«
Außerdem lassen sich sehr gute Ergebnisse mit dem »Beam Shaping« erreichen, wenn der Anwender nicht mit konventionellen Intensitätsverteilungen schweißt, sondern sie z.B. mit Mehrkernfasern formt. Versuche an der Röntgenstation am IFSW ergaben, dass sich bei einer Leistung von 70 Prozent in der Kernfaser immer noch sehr tiefe Kapillaren mit einem hohem Aspektverhältnis bilden (Kapillartiefe zu Kapillardurchmesser), während die verbleibenden 30 Prozent Leistung in der Ringfaser die Kapillaröffnung gezielt vergrößern. Hagenlocher: »Ich erhalte eine große Öffnung und gleichzeitig ein hohes Aspektverhältnis. Ich nehme also das Beste aus beiden Welten. Und es hat sich gezeigt, dass solche Intensitätsverteilung tatsächlich zu weitaus weniger Spritzern führen als beim Schweißen mit 100 Prozent Leistung in einer konventionellen Intensitätsverteilung.« In Kürze erhält das Institut einen kohärent phasengekoppelten Faserlaser der Firma CIVAN, der es ermöglicht die Intensitätsverteilung im Strahl flexibel zu formen und im Megahertz-Bereich zu modulieren.